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The basic concepts of classical mechanics are given in operator form. Then a
hybrid systems approach with the operator formulation of both quantum and
classical sectors is applied to the case of an ideal nonselective measurement. It
is found that the dynamical equation, consisting of the Schrödinger and Liouville
dynamics, produces noncausal evolution when the initial state of the measured
(quantum mechanical) system and measuring apparatus–classical mechanical
system is chosen to be as demanded in discussions regarding the problem of
measurement. Nonuniqueness of possible realizations of the transition from a
pure noncorrelated to a mixed correlated state is analyzed in detail. It is concluded
that the state of the quantum mechanical system instantaneously collapses because
of the nonnegativity of probabilities, and a dynamical model of this reduction
is proposed.

1. INTRODUCTION

A correct theory of combined quantum mechanical and classical mechan-
ical systems has to differ from quantum mechanics (QM) and classical
mechanics (CM) with respect to causality and related topics. This is because
the dynamical equations of QM and CM, taken separately, cannot lead to
such changes of states that can happen in a (quantum) measurement processes.
Quantum and classical mechanics are causal theories in which pure states
can evolve, according to the appropriate equations of motion, only into pure
states, not into mixed ones. For a process of nonselective measurement on
a QM system done by an apparatus which is a CM system, there is a possibility
for transitions from a pure to a mixed state.

An interesting approach to hybrid systems (consisting of one quantum
and one classical system) has been proposed (Aleksandrov, 1981; Boucher
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and Trashen, 1988) which uses for states and observables the direct product
of QM and CM representatives. The dynamical equation there introduced is,
say, a superposition of QM and CM dynamical equations. It has been objected
that this equation of motion does not save the nonnegativity of states, which
has to be unaltered if the theory is to be physically meaningful. Otherwise,
there would be events whose occurrence would be characterized by negative
probabilities. However, we shall show that a hybrid systems approach (HSA)
gives an adequate theoretical framework for description of an ideal nonselec-
tive measurement.

The strategy will be the following. First, for a particular choice of initial
state of a QM system and measuring apparatus which addresses the problem
of measurement, it will be shown that a correlated state, in contrast to the
initial state, cannot be pure. Second, it will be found that the (dramatic)
change of purity can be formally realized in more than one way; only one
of them will be unphysical for the involved negative probabilities. In order
to find what should be taken as the state of this hybrid system after the
beginning of measurement, an analysis will show that the change of purity
is necessarily followed by the change of this or that property of the state.
Of course, we shall try to keep the argumentation physically grounded.
Precisely, the necessary requirements of respecting the physical meaning
whenever possible and/or considering only physically meaningful mathemati-
cal entities when physical problems are discussed will be sufficient for finding
a physically meaningful possibility for the mixed correlated state. It will
become obvious that this state is in accordance with the expected collapse
of the QM state.

Before discussing the problem of measurement, we shall propose an
operator formulation of classical mechanics. We shall use it instead of the
standard phase space formulation of CM within the HSA since it will allow
us to proceed with the argumentation in more complete way. However, it
can be used separately for other purposes (Prvanović and Marić, 1999). Our
proposal is almost the same as the one used by Sudarshan and co-workers
(Gautam et al., 1979; Shery and Sudarshan, 1978, 1979), while there are
some similarities between our proposal and those given in Cohn (1980) and
Sala and Muga (1994).

2. THE OPERATOR DESCRIPTION OF CLASSICAL
MECHANICS

The most important features of the phase space formulation of classical
mechanics are (1) the algebra of observables is commutative, (2) the equation
of motion is the Liouville equation and it incorporates the Poisson bracket,
and (3) pure states are those with sharp values of position and momentum,
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the values of which are, in general, independent. All these will hold for the
operator formulation of CM, which we are going to introduce heuristically.

Let the pure states for position, in the Dirac notation, be .q&. Similarly,
for the momentum, we have .p&. In quantum mechanics independence of
states is formalized by the use of the direct product. These prescriptions
suggest that pure classical states should be related somehow with .q& ^ .p&.
Consequently, the operator formulation of classical mechanics should be
looked for within the direct product of two rigged Hilbert spaces, say *q ^
*p. In such a space, one can define an algebra of classical observables. It is
the algebra of polynomials in q̂cm 5 q̂ ^ Î and p̂cm 5 Î ^ p̂ with real
coefficients, etc. The elements of this algebra are Hermitian operators and
they obviously commute since [q̂cm, p̂cm] 5 0. Further, one can define states
as in the standard formulation of CM as functions of position and momentum,
which are now operators. Precisely, one can define the pure states as

d(q̂ 2 q(t)) ^ d( p̂ 2 p(t))

5 # # d(q 2 q(t))d( p 2 p(t)).q&^q. ^ .p&^p. dq dp

5 .q(t)&^q(t). ^ .p(t)&^p(t). (1)

The pure and (noncoherently) mixed states, commonly denoted by r(q̂cm, p̂cm,
t) in this formulation, are nonnegative and Hermitian operators, normalized
to d2(0) if, for the same function of real numbers, i.e., for r(q, p, t), it holds
that r(q, p, t) P R, r(q, p, t) $ 0, and ** r(q, p, t) dq dp 5 1. If one
calculates the mean values of observables, e.g., f (q̂cm, p̂cm), in the state r(q̂cm,
p̂cm, t)) by the Ansatz

Tr( f (q̂cm, p̂cm)r(q̂cm, p̂cm, t))

Trr(q̂cm, p̂cm, t)
(2)

then it will be equal to the usually calculated ** f (q, p)r(q, p, t) dq dp, where
f (q, p) and r(q, p, t) are the phase space representatives of corresponding
observable and state, respectively. It is easy to see that, due to (1) and (2),
the third characteristic of the phase space formulation holds for the new one
as well.

For the criterion of purity we propose the idempotency of state, up to
its norm. This criterion is obviously satisfied for (1) and it is adequate for
the standard formulation of QM. Therefore, we shall use it for the operator
formulation of hybrid systems, too.

The dynamical equation in the new formulation can be defined in accor-
dance with feature 2 as
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r(q̂cm, p̂cm, t)

t
5

H(q̂cm, p̂cm)

q̂cm

r(q̂cm, p̂cm, t)

p̂cm

2
H(q̂cm, p̂cm)

p̂cm

r(q̂cm, p̂cm, t)

q̂cm
(3)

For the RHS of (3) we shall use the notation {H(q̂cm, p̂cm), r(q̂cm, p̂cm, t)}.
The standard formulation of classical mechanics appears through the

kernels of the operator formulation in the .q& ^ .p& representation. This,
together with (2), can be used as the proof of equivalence of the two formula-
tions. The other important remark is that, after the q̂cm and p̂cm have been
defined, every other observable and every state can and have to be expressed
as some function of just these two.

3. AN OUTLINE OF THE HYBRID SYSTEMS APPROACH

A physical system is called a hybrid system if it consists of one QM
and one CM system. Such systems were discussed in Aleksandrov (1981),
Anderson (1995), Boucher and Trashen (1988), Caro and Salcedo (1999),
Diósi (1999), Peres (1993), Prezhdo and Kisil (1997), and Salcedo (1996).
Instead of reviewing these articles with the purpose of introducing the formal-
ism for hybrid systems, we shall start with the standard treatment of two QM
systems and then, by substituting one quantum with one classical system,
find directly the appropriate theoretical framework.

The standard formulation of two quantum systems needs the direct
product of two (rigged) Hilbert spaces, say *qm1 ^ *qm2. The states of these
systems evolve according to the Schrödinger equation with the Hamiltonian
(a Ĥ a

qm1 ^ Ĥ a
qm2, for which

(Sij r̂ij
qm1(t) ^ r̂ij

qm2(t))

t

5
1
i" Fo

a
Ĥ a

qm1 ^ Ĥ a
qm2, o

ij
r̂ij

qm1 (t) ^ r̂ij
qm2(t)G

5 o
aij

1
i"

[Ĥ a
qm1, r̂ij

qm1 (t)] ^
Ĥ a

qm2r̂ij
qm2 (t) 1 r̂ij

qm2(t)Ĥ a
qm2

2

1 o
aij

Ĥ a
qm1 r̂ij

qm1(t) 1 r̂ij
qm1(t)Ĥ a

qm1

2
^

1
i"

[Ĥ a
qm2, r̂ij

qm2(t)] (4)

With (ij r̂ij
qm1(t) ^ r̂ij

qm2(t) (and more for the one in the next expression) we
want to accommodate the notation for states to that type of correlation which
will be discussed below.
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Suppose now that the second system is classical. This means that every-
thing related to this system in (4) has to be translated into the classical
counterparts. Having in mind the above formulation of CM, we propose

(Sij r̂ij
qm(t) ^ r̂ij

cm(t))

t

5 o
aij

1
i"

[Ĥ a
qm, r̂ij

qm(t)] ^
Ĥ a

cmr̂ij
cm(t) 1 r̂ij

cm(t) Ĥ a
cm

2

1 o
aij

Ĥ a
qmr̂ij

qm(t) 1 r̂ij
qm(t)Ĥ a

qm

2
^ {Ĥ a

cm, r̂ij
cm(t)} (5)

as the dynamical equation. The explanation follows. The first system remained
quantum mechanical, so its type of evolution is left unaltered. The Poisson
bracket is there instead of the second commutator because classical systems
evolve according to the Liouville equation. It is defined as in (3); the partial
derivatives are with respect to the classical coordinate and momentum:
q̂ ^ Î and Î ^ p̂. All states and observables, both QM and CM, appear in
the operator form, i.e., the hybrid system is defined in *qm ^ *g

cm ^ *p
cm.

(Note that the coordinate and momentum of the quantum and classical systems
are operators acting in *qm and *q

cm ^ *p
cm, respectively.) Some justifications

of (5) are given in due course.
Similar equations, in the c-number formulation of CM, were proposed

in Aleksandrov (1981), Anderson (1995), Boucher and Trashen (1988), and
Prezhdo and Kisil (1997). There one can find a variety of requirements that
have to be imposed on the equation of motion for hybrid systems which will
not be reviewed here. We just mention that the equation proposed in the first
three of these references is antisymmetric, while the one in the last is not.

More discussions of this subject can be found in Caro and Salcedo
(1999) and Salcedo (1996). The starting point there is that the formalism of
hybrid systems should have all the mathematical properties of QM and CM
(see Caro and Salcedo, 1999, for details) and it was concluded that such a
formalism cannot exist. Rather than as a critique, we understand this result
as an indication that the HSA is on the right track. Namely, we do not expect
the appropriate formalism to possess all mathematical properties the same
as in quantum and classical mechanics. On the contrary, we expect that the
correct theory of hybrid systems will differ from these two mechanics with
respect to the causality of evolution and, consequently, all other related topics.
More precisely, in some cases the hybrid system equation of motion should
lead to noncausal evolution. The example we have in mind, as we have
mentioned, is the process of (quantum) measurement.
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It has been objected that the HSA dynamical equation does not save
the nonnegativity of states (Boucher and Trashen, 1988; Peres 1993; Prezhdo
and Kisil, 1997). Our intention is to show, by a subtle analysis of the process
of measurement, that this need not be so, i.e., the nonnegativity of states can
be saved. After finding a dynamical equation as the source of noncausal
evolution, which will be the case for (5), one needs to approach its solution
through arguments that are of the same kind as those which qualify nonnega-
tive states as meaningless, and to find acceptable states. This will become
clear later. Here, we just mention that the noncausal evolution of the CM
system alone occurs in the treatment of classical mechanics by the inverse
Weyl transform of the Wigner function (see Muga and Snider, 1992, for
details).

4. THE PROCESS OF MEASUREMENT

Usually, it is said that the measuring apparatus is a classical system.
The formalism of hybrid systems becomes then the natural choice for the
representation of the process of (quantum) measurement. We shall consider
the nonselective measurement within the operator formulation of HSA by
taking that the states of the measured QM system and the measuring apparatus
evolve under the action of

Hqm(q̂ ^ Î ^ Î, p̂ ^ Î ^ Î ) 1 Hcm(Î ^ q̂ ^ Î, Î ^ Î ^ p̂ )

1Vqm(q̂ ^ Î ^ Î, p̂ ^ Î ^ Î ) ? Vcm(Î ^ q̂ ^ Î, Î ^ Î ^ p̂ )

To simplify the expressions, we shall use Ĥqm ^ Îcm 1 Îqm ^ Ĥcm 1 V̂qm ^
V̂cm as the notation for this Hamiltonian. The measured observable is V̂qm 5
(i vi.ci&^ci. ^ Î ^ Î. It is necessary that [Ĥqm, V̂qm] 5 0 because, if the
quantum system before the measurement was in one of the eigenstates of
the measured observable, say .ci&, then this system would not change its
state during the measurement. Then, Ĥqm can be diagonalized in the same
basis: Ĥqm 5 (i hi.ci&^ci. ^ Î ^ Î. For the CM parts of the Hamiltonian it
is reasonable to assume that they do not cause periodic motion of the pointer.
We shall not specify the Hamiltonian in more detail because we are interested
only in discussions related to the form of the state after the beginning of
measurement.

For the initial state of the quantum system we shall take the pure state
.C(to)& and for the pointer of the apparatus we shall take that initially it is
in a state with sharp values of position and momentum, say qo and po , so
the state of the hybrid system at the moment when the measurement starts
is r̂qm(to) ^ r̂cm (to) 5 .C(to)&^C(to). ^ .qo&^qo. ^ .po&^po.. Of course, the
problem of measurement demands that .C(to)& be a superposition (i ci (to).ci&.
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Due to the interaction term in the Hamiltonian, the state of the composite
system will become correlated—the CM parts of the state will depend some-
how on the eigenvalues of V̂qm. Let us use the notation (ij r̂ij

qm(t) ^ r̂ij
cm(t) in

order to allow the analysis of the a priori possible situation in which the
CM parts of the state can depend on two different eigenvalues of V̂qm.
With this notation, and the above for the Hamiltonian, the dynamics of the
measurement becomes can be represented by

((ij r̂ij
qm(t) ^ r̂ij

cm(t))

t

5 o
ij

1
i"

[Ĥqm, r̂ij
qm(t)] ^ r̂ij

cm(t) 1 o
ij

1
i"

[V̂qm, r̂ij
qm(t)] ^ V̂cmr̂ij

cm(t)

1 o
ij

r̂ij
qm(t) ^ {Ĥcm, r̂ij

cm(t)}

1 o
ij

1
2

(V̂qmr̂ij
qm(t) 1 r̂ij

qm(t)V̂qm) ^ {V̂cm, r̂ij
cm(t)} (6)

where Ĥcm, V̂cm, and rij
cm(t) are derived in the Poisson bracket with respect

to q̂ ^ Î and Î ^ p̂ that act in *q
cm ^ *p

cm.
The solution of this dynamical equation will represent the state of the

hybrid system at t . to and the search for it can start by noticing that the
CM terms r̂ii

cm(t) attached to the quantum mechanical terms with equal indices
r̂ii

cm(t) (which we shall call diagonal terms) are r̂ii
qm(t) 5 .qi (t)&^qi (t). ^

.pi (t)&^pi (t)., where the indices in .qi (t)& and .pi (t)& underline the dependence
on one eigenvalue of V̂qm. Guided by this dependence of each CM bra and
ket of r̂ii

cm(t) on one eigenvalue of V̂qm, as the candidate for the correlated
state we shall consider the coherent mixture

o
ij

cij(t).ci&^cj. ^ .qi(t)&^qj (t). ^ .pi(t)&^pj (t). (7)

There are two other candidates for correlated state. The first is

o
ij

cij(t).ci&^cj. ^ .qij(t)&^qij(t). ^ .pij(t)&^pij(t). (8)

where the indices in .qij(t)& and .pij(t)& to represent the dependence on two
eigenvalues of V̂qm in the form 1–2 (vi 1 vj). The same holds for ^qij(t). and
^pij(t).. The motivation for this comes from the symmetrization of the QM
sector in front of the Poisson bracket on the RHS of (5). The terms r̂ij

cm(t)
of (8) are diagonal with respect to the eigenbasis of q̂cm and p̂cm for each
pair of indices, while these terms of (7) for i Þ j are not. As the third
candidate for correlated state we shall consider the noncoherent mixture
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o
i

.ci (to).2.ci&^ci. ^ .qi (t)&^qi (t). ^ .pi (t)&^pi (t). (9)

All three states have the same diagonal terms r̂ii
qm(t) ^ r̂ii

cm(t). The difference
between these states is in the CM i Þ j terms. Each ket and bra of r̂ij

cm(t), i
Þ j, in (7) depend on only one eigenvalue of V̂qm, in (8) they depend on two
eigenvalues, and in expression (9) there are no such terms.

The state (7) is designed to represent as pure, nonnegative, and Hermitian
correlated state as is the initial state and it has nondiagonal QM terms (with
respect to the basis .ci&) as the state .C(to)&^C(to).. [The state is taken to be
pure if it is idempotent up to the norm: r̂2 5 d2(0) ? r̂.] The purity of (7)
rests on the same type of time development (dependence on one vi) as .qi (t)&
and .pi (t)&, regardless of whether they belong to r̂ij

cm(t) with i 5 j or with
i Þ j. But the following holds. The initial state of the apparatus is diagonal
with respect to the eigenbasis of q̂cm and p̂cm. To “create” the nondiagonal
terms from it in a form which ensures purity, one would need to introduce
operators that do not commute with q̂cm and p̂cm to act on CM states. One
would need to take some other dynamical equation instead of (5) as well.
That dynamical equation should use the commutator for both subsystems, as
is the case for (4). If one would do that, then, in a treatment of the apparatus,
one would neglect the requirements 1 and 2 which are part of the definition
of a classical system (see Section 2). This type of reasoning would be à la
von Neumann’s approach to the measurement process where the apparatus
and measured system are both treated as quantum systems. Instead of going
in that direction, we are considering here the apparatus as a classical system,
defined in the above way. By this we avoid the well-known problems that
arise with states such as (7). [According to (7), there could be a superposition
of pointer states which is unobserved. Then, the problem of measurement,
as we understand it, is to explain why and describe how a state similar to
(7) collapses to a state similar to (9).]

A less descriptive and more formal way to look for a solution is to
assume that the time dependence of the evolved state is as represented by (7).
Then, by substituting (7) in (6) in order to verify this, we find a contradiction.
Namely, the CM i Þ j terms of (7) do not commute with q̂cm and p̂cm for t Þ
to , so they are not functions of only these observables. The partial derivatives
/q̂cm and /p̂cm from the Poisson bracket “annihilate” the CM nondiagonal
elements of (7) for t . to when they act on them. For instance,



q̂
.qi (t)&^qj (t). 5



q̂
d(q̂ 2 qi (t)) ? di,j (10)

(t . to) and similarly for .pi (t)&^pj (t). under the action of /p̂cm. Thus, for
the CM i Þ j terms of (7) the RHS of (6) vanishes for t . to , while the LHS
is not equal to zero, by assumption.
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Let us stop for a moment and make some remarks. An immediate
consequence of the fact that (7) does not satisfy (6) is that the initial purity
of the state is lost due to the established correlation. This is confirmed by
consideration of (8) and (9). These two states do satisfy (6), but they are
both mixed—they are not idempotent up to the norm: r̂2 Þ d2(0) ? r̂. This
property is plausible for (9). For (8) it is enough to notice that in r̂2 there
is, for example, a term .ci&^ci. ^ .qij(t)&^ qij(t). ^ .pij(t)&^pij(t). which is not
present in r̂. Therefore, the hybrid system dynamical equation produces in
this particular case a noncausal evolution: a pure noncorrelated state trans-
forms into a mixed correlated state (which is to be found). This is the crucial
difference between (5) and the Schrödinger and Liouville dynamics that
appear within it.

One can convince oneself, by looking at (8) and (9), that purity is not
the only property of the initial state that changes instantaneously at the
moment when interaction begins. Obviously, there are no i Þ j terms in (9),
the meaning of which is that the QM part of (9), in contrast to the initial
one, is diagonal with respect to the basis .ci&. On the other hand, the state
(8) is not a nonnegative operator for all t . to , while the initial state is. For
all states that are not nonnegative operators one can construct properties—
events—that would be “found” with negative probabilities if they were to
be measured. In order to construct such a property for (8), it is helpful to
notice that the CM parts of the i Þ j terms of (8) are regular states of CM
systems; they are different from those with i 5 j and are accompanied by
the QM “states” with vanishing trace. (By regular we mean per se realizable
since they are diagonal, and “states” stands here, and it would be better to
stay in all similar cases, because they can only be interpreted as impossible.)

For the related negative probabilities, states which are not nonnegative
operators should be qualified as meaningless and, since they appear in the
HSA, there have been objections to its relevance for physics. In what follows,
we show that these probabilities are not unavoidable here. In other words,
our intention is to rehabilitate the HSA and this will manifest itself in finding
formal support for a physically meaningful state (9) that should be taken as
the solution, not the unphysical state (8). The arguments have to be in
accordance with physics since experience leads one to be unsatisfied with
(8) and, of course, the HSA is aimed at formalizing the behavior of physical
systems. The first argument, based on the validity of (10), will continue the
analysis of (7). The second discussion, concentrated on (8) and unrelated to
(10), will again designate that (9) is the proper solution, but, in contrast to
the first one, it will proceed in a more interpretational than formal manner.

Our insistence on (7) rests on the fact that one can look on it as a trial
state. It is the perfect choice for a trial state because it has the same physically
relevant characteristics as the initial state and it is equal to the initial state
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for t 5 to , i.e., for t → to , (7) approaches the initial state without any change
when these characteristics are considered. Moreover, the need for a trial state
comes from the absence (to our knowledge) of some rule that would prescribe
how to manage the change of idempotency. After being substituted on the
RHS of the dynamical equation, the trial state will indicate the appropriate
type of time transformation. Then, by minimal modifications of this state,
intended to adapt it to that type, the desired correlated state will be found.

The RHS of (6) for the CM i Þ j terms of (7) vanishes for all t . to

according to (10). Exclusively for t 5 to the CM i Þ j terms of (7) can be
expressed as functions of only q̂cm and p̂cm since qi (to) 5 qo and pi (to) 5 po

for all i. Only for this moment does the RHS of (6) for the CM i Þ j terms
of (7) not vanish. Therefore, one concludes that the CM parts of i Þ j terms
have to be constant after the instantaneous change at to , i.e., instead of
those of (7), the QM nondiagonal terms have to be coupled with the time-
independent CM terms for all t . to. This is how the dynamical equation
designates that (8) should not be taken as the solution. What one has to do
if one wants to accommodate (7) to the deduced time independence of the
CM i Þ j terms is to take for these terms (for t . to) some operators that
do not involve time. Then, in order to satisfy (6), the operators should not
be expressible as some functions of (only available) q̂cm and p̂cm. On the
other hand, with these operators one should not change either the Hermitian
character or the nonnegativity of the hybrid system state since nothing asks
for that. The resulting state, of course, has to be impure because any change
of the CM i Þ j terms of (7) affects its idempotency. In this way, (9) will
be obtained as the appropriate solution.

Having in mind the functions of q̂cm, p̂cm and operators that do not
commute with these two, one may not want to accept (10). For the sake of
mathematical rigor, let us clarify this. The CM nondiagonal terms of (7)
cannot be expressed as functions depending only on q̂cm and p̂cm, but they
can be expressed as functions of these two if, first, the number of operators
available is increased and, second, there is noncommutativity among them.
How these functions would look like depends on these new operators. Since
there are neither motivations nor instructions for their introduction coming
from physics, they can be introduced freely. More precisely, these operators
do not represent anything meaningful and they need not enclose any known
mathematical structure. For instance, .qi (t)&^qj (t). can be expressed as exp[(1/
a)(qi (t) 2 qj (t))p̂]d(q̂ 2 qj(t)), where p̂ is not to be confused with the CM
momentum since it acts in *q, not in *p, and ^q.p̂.q8& 5 a d(q 2 q8)/q.
Here, a can be anything, it need not to be equal to 2i" as in quantum
mechanics. Another (even more pathological) example is the following. Since
the CM nondiagonal dyads do not commute with q̂cm and p̂cm, they can be
used as the new operators, e.g., .qi (t)&^qj (t). 5 F(qi (t))21F(q̂ ).qi (t)&^qj (t)..
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This shows that these nondiagonal dyads can be expressed as functions
depending on q̂cm, p̂cm, and uncountably many other arguments—all nondiago-
nal dyads, where F can be any function. With these two examples we wanted
to justify the need to bound considerations of CM in operator form to functions
of only q̂cm and p̂cm [see Shery and Sudarshan (1978), where this problem is
approached in a different manner]. On the other hand, the need to discuss
the purity of the state of the hybrid system gives rise to the need to consider
nondiagonality (with respect to the basis .q& ^ .p&) of the CM state. When
these two meet in the dynamical equation with expressions like (10), nothing
unusual is done: the derivation of an entity which is not a function of that
with respect to which it is derived has zero as a result. If one says that the
LHS of (10) is just defined by the RHS of (10), then it should be noticed
that (10) does not contradict any of the calculational rules of CM and QM
because in the standard formulation of classical mechanics there is no possibil-
ity for realization of nondiagonality, while in the standard formulation of
quantum mechanics there is no necessity for restriction to commutativity.
Anyhow, let us proceed by supposing that one is not willing to accept (10)
and/or that one finds the given support for (9) as not sufficiently convincing.

Even without (10), one is not free of contradiction if (7) is taken to be
the solution. Due to the symmetrization of the QM sector, on the RHS of
(6), in front of the second Poisson bracket there are two eigenvalues of V̂qm

coming from r̂ij
qm(t) (i Þ j ) of (7). Because of this, the assumption that each

ket and bra of r̂ij
cm(t) (i Þ j ) of (7) depends on only one eigenvalue of V̂qm

is contradicted. Thus, it seems that to introduce noncommuting operators in
*q

cm ^ *p
cm and/or to slightly modify (6) would not be enough to avoid some

contradiction connected to (7) when it is seen as the result of evolution.
However, it is not our intention to go into these areas, which are beyond the
purpose of this article.

After discarding (7), one concludes that each ket and bra of r̂ij
cm(t) (i Þ

j ) would depend on two eigenvalues of V̂qm coming from r̂ij
qm(t) (i Þ j ) for

t . to if there would be r̂ij
qm(t) (i Þ j ) for all such times. Therefore, the most

important step in solving the dynamical equation for the above Hamiltonian
is to find what happens with the initial QM state at the moment when
interaction begins. Then it will be almost a trivial problem to find the state
of the hybrid system at latter times. Or, more precisely, in the presence of
.ci&^cj. (i Þ j ) for t . to one has a dilemma: (8) or (9), the meaning of
which is that by the assumed linearity of evolution, in a case when it is
noncausal, one excludes the physical meaning of the evolved state, and
vice versa.

From this point, our strategy for defending the HSA from objections
that it might be unphysical to show that one finds it unphysical only after
one has previously decided to prefer formal, rather than physical arguments
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and, moreover, only after one has neglected statements (being, by the way,
of the same sort as those used for disqualification) that lead to physically
meaningful states. Let us be more concrete. To find (8) it was necessary to
start with the more formal assumption that the nondiagonality of the QM
part of the state, with respect to the eigenbasis of Ĥqm and V̂qm, has not
changed at the moment when the purity of the state has changed. Opposite
to this is to assume that the diagonality of the QM part of the state with
respect to the basis which is privileged at that time has not changed. Before
the moment to , the QM part of the state is diagonal with respect to the
eigenbasis of that observable for which .C(to)& is the eigenstate. Only this basis
can be characterized as privileged for that time because the corresponding
observable has been used for preparation. For physics, each other basis,
including the eigenbasis of Ĥqm and V̂qm, is less important, i.e., their signifi-
cance comes from mathematics, not from physics—they can be used just to
express the same state in different manners. After the moment to the privileged
basis is the eigenbasis of V̂qm (and Ĥqm) because this observable is measured.
So, instead of claiming that the nondiagonality with respect to the basis which
is going to become privileged should not change, one can claim that the
diagonality with respect to the actually privileged basis should not change.
These statements express two different types of reasoning: the first one
concentrates on the formal aspect of the operators representing states [leading
to (8)], while the other one is concerned about the meaning [leading to (9)].

If the mentioned nondiagonality of the QM part of the initial state has
survived to , then, according to (6), there would be CM systems in (realizable)
states r̂ij

cm(t) coupled to the QM nondiagonal terms, as is given by (8). But,
the probability of event Î ^ .qij(t)&^qij(t). ^ .pij(t)&^pij(t). for the state (8) is
equal to zero for all t . to , where i Þ j. Neither apparatus would be in any
of the states r̂ij

cm(t) with i Þ j after the beginning of measurement. (This is
not the case for i 5 j.) So, if the statements about probability are of any
importance, before proclaiming (6) as inadequate because it does not save
the nonnegativity of the initial state, one should accept that in the states
r̂ij

cm(t) (i Þ j ) neither apparatus would be. The consequence of this is that
the assumption of surviving QM nondiagonal terms is not correct. In physics,
where the probability is a significant concept, what has just been found is
enough to conclude that (9) should be taken as the solution. Simultaneously,
by finding that (8) is unphysical, one finds why it is so: it is unphysical
because some states of CM systems that are not exhibited by any apparatus
are kept in the representation of the state of the hybrid system. By taking
this into account, i.e., by reexpressing (8) with this in mind, one will find
(9) as the proper state of the hybrid system.

Finally, the validity of the hybrid system dynamical equation can be
verified for situations for which it is easy to say what behavior is desired.
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For example, the hybrid system dynamical equation gives the standard one-
to-one evolutions of QM and CM subsystems when the interaction term in
the Hamiltonian is absent. In this case the evolved states are of the same
purity and nonnegativity as the initial states. Moreover, for the above Hamilto-
nian and the initial state of the hybrid system (i .ci (to).2.ci&^ci. ^ .qo&^qo. ^
.po&^po., the evolved state is not unphysical, it is (9). These examples justify
the hybrid system dynamical equation as the proper one. So, it is likely that
this holds for the case addressing the problem of measurement.

5. CONCLUDING REMARKS

Without an operator formulation of classical mechanics, the analysis of
the problem of measurement in the hybrid systems approach would not be
complete. First, this formulation enabled us to consider the pure correlated
state and then, after finding that such a state cannot satisfy the dynamical
equation, to conclude that this dynamical equation produces noncausal evolu-
tion: when the pure initial state of the quantum system is not an eigenstate
of the measured observable, the initial state of the hybrid system, which is
also pure, necessarily and instantaneously transforms into a mixed correlated
state. Second, when it was not so obvious how the dynamical equation should
be solved, the operator formulation offered support for one particular way.

The choice of a state representing the hybrid system after the beginning
of measurement is important since the appropriateness of the HSA for physics
depends on it. Both states that satisfy the dynamical equation for the given
Hamiltonian are same regarding the impurity and absence of CM i Þ j terms,
so the essential part of the physical meaning is one and the same. Only the
way of expressing these differs from (8) to (9). For their properties, perhaps
it would not be wrong to say that (9) is the physical result of hybrid systems
dynamics and that (8) is a physically unacceptable mathematical solution.

The third way in which the operator formulation of classical mechanics
is useful is that it allows one to design, say, a dynamical model of instantaneous
decoherence. Namely, in the resulting proposal of HSA, the partial derivations
in the Poisson bracket change the CM nondiagonal terms at to [if the initial
state is seen as (7) with t 5 to] and then obstruct their further time development
according to (10), i.e., these derivations annihilate the CM nondiagonal terms.
So, in this proposal, the dynamics is the cause of collapse. The reduction of
the quantum mechanical state is the consequence of the disappearance of
classical mechanical i Þ j terms. The part of the interpretation of (8) which
is meaningful from the point of view of everyday experience has led to the
same conclusion: terms r̂ij

qm(t) vanish because to them related and per se
realizable events r̂ij

cm(t) cannot occur. In another words, the reason for the
decoherence of the QM state in case of a measurement lies in the Liouville
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equation. It is linear only in probability densities within the framework of
commutative operators that represent position and momentum of classical
systems, in contrast to the Schrödinger equation, which is linear in both the
probability densities and the probability amplitudes.

In almost the same manner as the action of projectors describes measure-
ment in standard quantum mechanics, the action of partial derivatives does
it here. If one compares the standard formulation of QM and the operator
formulation of HSA, one finds them similar, for they treat decoherence-
collapse as an instantaneous process. They differ since decoherence is dynami-
cal here. The operator formulation of HSA in this way answers one question
raised in quantum mechanics: How should the collapse be described? But
there is another, more important question: Why does it happens? The hybrid
system approach does not ask for some ad hoc concepts to explain the collapse
of the state; the nonnegativity of probabilities is enough. Because of the
nonnegativity of probabilities, the collapse of the state is the only possible
way of evolution for physical systems in the considered case and it is as
ordinary as the one-to-one evolutions are in other cases. If one wants to stay
within the single Hilbert space formulation of QM, then the HSA puts the
projection postulate on a more solid ground. It is not related to the conscious-
ness of the observer, but to the nonnegativity of probabilities.

The nonnegativity of probabilities is, and should be, incorporated among
the first principles of any physical theory. The hybrid system approach differs
from classical and quantum mechanics only in that this principle is invoked
not just at the beginning, when the initial state is represented, but for the
moments at which states lose purity as well. This rule offers an alternative
in the search for a solution and it is not in contradiction with these two
mechanics. There are no such moments when only the Schrödinger or the
Liouville equation is solved within the Hilbert space and phase space, respec-
tively, so there is no rule which would be contradicted. If it is represented
(as some kind of superselection rule) in *qm ^ *q

cm ^ *p
cm as a restriction

to consider only states that are nonnegative operators, then there would be
only two possibilities for a correlated state in the analyzed case: the coherent
mixture (7) and the noncoherent mixture (9). The state (9) would follow
immediately after finding that (7) cannot satisfy the equation of motion.
(There is strong similarity between this and the way of solving the Maxwell
quations where only the physical meaningful solution is retained.)

Roughly speaking, the procedure of solving differential equations con-
sists in two steps. The first one is to find all functions that satisfy it (if there
is any) and the second is, if there are more than one function, to select one
by imposing some condition. The most often used is the Cauchy condition.
Adapted to the present framework, it reads: The state at later times is the
one which for t 5 to becomes equal to the initial state. With this condition
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one wants to express the assumed continuity of evolution. The state (8)
obviously follows in this way and, since this state is unphysical, the HSA
shows that the state of physical systems in the considered case has to evolve
discontinuously. From our point of view, this strongly recommends the HSA
for a theory of combined classical and quantum systems.

The objections addressing the relevance of the HSA for physics are
closely related to the application of the Cauchy condition in, let us say, a
careless manner. We believe that it is not correct to take it as the unique
supplementary condition and that it is not appropriate to impose it without
noticing that something dramatic happens with the initial state at the moment
when the evolution begins. If one were to disregard the unavoidable change
of purity of the initial state and treat it as unimportant, then one would lose
the physics from the very beginning. Moreover, then one could not discuss
the physical meaning of the solution at the end because it would make
such a consideration inconsistent. Only after noticing that [according to the
discussion based on (7) and (10)] the initial state has changed instantaneously
and discontinuously and after finding in which state it has changed should
one apply the Cauchy condition, for then it is adequate because the further
evolution is causal and in all aspects continuous. If this, the rule to invoke
the nonnegativity of probability for the moments at which states lose purity,
and (10) are new at all, these rules are the slightest possible modifications
of the previously used ones. Or perhaps they are just the accommodation of
standard rules to new situations.

Needless to say, the state (9) is in agreement with what is usually
expected to happen when the problem of measurement is considered in an
abstract and ideal form. To each state of the measured quantum system, which
are the eigenstates of the measured observable, there corresponds one pointer
position and momentum. The ith eigenvalue of the measured observable
occurs with probability .ci (to).2, and, as was said, (9) takes place immediately
after the apparatus in the state .qo& ^ .po& has started to measure V̂qm on the
system in the pure state .C(to)& which can be seen as (i ci (to).ci&.

Once noticed, the departure from strict causality would also be noticed
in (all) other aspects as some strange feature. For example Caro and Salcedo
(1999) found that so-called universal privileged times in dynamics of hybrid
systems appear. Here, to is such a moment. In contrast to their opinion, we
believe that this is a rather nice property of the approach. Namely, for the
described process, and all others that can be treated in the same way, pure
states, can evolve into noncoherent mixtures, while noncoherent mixtures
cannot evolve into coherent mixtures—pure states, i.e., when the nonnegativ-
ity of probability is respected, such processes are irreversible. This means that
for them the entropy can only increase or stay constant. Then the distinguished
moments of the increase of entropy can be used for defining an arrow of time.
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S. Prvanović and Z. Marić (1999). An operator formulation of classical mechanics and semiclas-

sical limit, quant-ph/9911033.
R. Sala and J. G. Muga (1994). Physics Letters, 192A, 180.
L. L. Salcedo (1996). Physical Review, 54A, 3657.
T. N. Shery and E. C. G. Sudarshan (1978). Physical Review, 13D, 4580.
T. N. Shery and E. C. G. Sudarshan (1979). Physical Review, 20D, 857.


